Polymorphisms in the Voltage-gated Sodium Channel Genes and Antiepileptic Efficacy of Carbamazepine

نویسندگان

  • Sin-Young Jang
  • Myeong-Kyu Kim
  • Seong-Min Choi
  • Seung-Han Lee
  • Man-Seok Park
  • Byeong-Chae Kim
چکیده

Background: Voltage-gated sodium channels are responsible for the initial-depolarization component of action potentials in brain neurons, and hence they are the target for widely used antiepileptic drugs such as carbamazepine (CBZ). With the working hypothesis that genetic defect in voltage-gated sodium channels can alter the response to CBZ, this study was performed to elucidate the relationship between single-nucleotide polymorphisms (SNPs) of the SCN1A, SCN1B, and SCN2A genes and CBZ resistance in Korean epileptics. Methods: Candidate SNPs of SCN1A, SCN1B, and SCN2A were developed using the pooled DNA from healthy controls (n=200), of which representative SNPs of each of SCN1A, SCN1B, and SCN2A were determined based on theoretical functional values. Each representative SNP was genotyped for a CBZ-resistant group (CRE, n=168) and a CBZresponsive group (CSE, n=154), and the frequencies of alleles and genotypes of each SNP were compared between the two groups. Results: Eighteen SNPs were developed in SCN1A, SCN1B, and SCN2A. SCN1A-PM in exon 16 of SCN1A, SCN1B-PM in exon 3 of a splicing variant of SCN1B, and SCN2A-PM in the 7th intronic sequence of SCN2A were selected as the representative SNPs for these genes. The distributions of alleles and genotypes of each representative SNP did not differ between the CRE and CSE groups. Conclusions: In Korean epileptics, there appears to be no significant relationship between representative SNPs of SCN1A, SCN1B, and SCN2A and CBZ resistance. J Korean Neurol Assoc 27(2):147-153, 2009

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sidedness of carbamazepine accessibility to voltage-gated sodium channels.

Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with ext...

متن کامل

Clinical response and tolerability of eslicarbazepine in treatment of partial onset seizures: impact of a novel metabolic pathway

Correspondence: Cynthia L Harden Comprehensive epilepsy Care institute, Hofstra North Shore, Long island Jewish School of Medicine, New Hyde Park, NY, USA email [email protected] Abstract: Epilepsy is a common chronic neurological condition affecting 50 million people worldwide. Because at least 30% of patients with partial seizures do not achieve seizure control with the current antiepileptic d...

متن کامل

Brivaracetam Differentially Affects Voltage-Gated Sodium Currents Without Impairing Sustained Repetitive Firing in Neurons

AIMS Brivaracetam (BRV) is an antiepileptic drug in Phase III clinical development. BRV binds to synaptic vesicle 2A (SV2A) protein and is also suggested to inhibit voltage-gated sodium channels (VGSCs). To evaluate whether the effect of BRV on VGSCs represents a relevant mechanism participating in its antiepileptic properties, we explored the pharmacology of BRV on VGSCs in different cell syst...

متن کامل

Antiepileptic drug mechanisms of action.

Established antiepileptic drugs (AEDs) decrease membrane excitability by interacting with neurotransmitter receptors or ion channels. AEDs developed before 1980 appear to act on sodium channels, gamma-aminobutyric acid type A (GABAA) receptors, or calcium channels. Benzodiazepines and barbiturates enhance GABAA receptor-mediated inhibition. Phenytoin (PHT), carbamazepine (CBZ), and possibly val...

متن کامل

Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders.

Voltage-gated sodium channels (VGSCs) are key mediators of intrinsic neuronal and muscle excitability. Abnormal VGSC activity is central to the pathophysiology of epileptic seizures, and many of the most widely used antiepileptic drugs, including phenytoin, carbamazepine, and lamotrigine, are inhibitors of VGSC function. These antiepileptic drugs might also be efficacious in the treatment of ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009